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Abstract

Purpose of Review—Environmental health researchers are increasingly concerned about 

characterizing exposure to environmental chemical mixtures (co-exposure to multiple chemicals 

simultaneously). We discuss approaches for quantifying an overall summary score or index 

that reflects an individual’s total exposure burden to components of the mixture. We focus on 

unsupervised methods, in which the summary score is not computed in relation to a pre-specified 

health outcome.

Recent Findings—Sum-scores and principal components analysis (PCA) are common 

approaches for quantifying a total exposure burden metric but have several limitations: 1) they 

require imputation when using exposure biomarkers with high frequency of non-detection, 2) they 

do not account for exposure heterogeneity, 3) sum-scores assume the same measurement error 

for all people, while there is no error term inherent to the PCA model as its primary purpose 

is dimension reduction, and 4) in pooled analyses, both approaches are limited to analyzing the 

set of exposure variables that are in common across all studies, potentially discarding valuable 

information. Meanwhile, item response theory (IRT) is a novel and promising alternative to 

calculate an exposure burden score that addresses the above limitations. It allows for the inclusion 

of exposure analytes with high frequency of non-detects without the need for imputation. It can 

account for exposure heterogeneity to calculate fair metrics for all people, through assessment 
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of differential item functioning and mixture IRT. IRT also quantifies measurement errors of the 

exposure burden score that are individual-specific, such that it appropriately assigns a larger 

standard error to an individual who has missing data on one or more exposure variables. Lastly, 

IRT enhances cross-study harmonization by enabling the creation of exposure burden calculators 

to set a common scale across studies, and allows for the inclusion of all exposure variables within 

a chemical class, even if they were only measured in a subset of participants.

Summary—Summarizing total exposure burden, through the creation of fair and informative 

index scores, is a promising tool for environmental health research as environmental exposures are 

increasingly used for biomonitoring and clinical recommendations.

Keywords

Environmental mixtures; Exposome; Precision environmental health; Item response theory; 
Exposure burden scores; Harmonization

Introduction

Environmental health scientists are increasingly concerned with characterizing exposure and 

health effects of the exposome, which reflects the reality that individuals are simultaneously 

exposed to multiple environmental agents at once [1]. The exposome encompasses the 

cumulative environmental exposures an individual experiences throughout their lifetime [2], 

capturing many environmental agents including chemicals exposures from sources such 

as air, water, and food, and non-chemical exposures such as social, psychological, and 

lifestyle factors [3–5]. Exposure to the chemical exposome occurs in mixtures, meaning that 

humans may encounter more than one harmful chemical at once [6]. Chemical mixtures 

that contribute to exposure can include organic chemicals, such as per- and polyfluoroalkyl 

substances (PFAS), pesticides, personal care product chemicals, plasticizers, and flame 

retardants, as well as inorganic chemicals, such as heavy metals. Because anthropogenic 

chemicals pose significant health risks, precision environmental health seeks to integrate 

this knowledge of the exposome with advances in environmental biochemistry and data 

science to refine our understanding of how chemical exposures affect an individual’s health. 

Throughout this paper, we use the terms “biomarker” and “analyte” to refer to chemicals 

measured in human biospecimen. Although our focus is on chemical biomarker data, the 

methods discussed can also be broadly applied to other types of environmental mixtures 

data, such as external exposure data from environmental monitors and wristbands.

As statistical methods to address chemical mixtures have blossomed in recent years [7], so 

has the recognition that environmental “mixtures” research encompasses a broad array of 

questions that each requires its own tools [8, 9]. One such question relates to quantifying 

an overall summary exposure score or index that reflects an individual’s total burden of 

exposure to chemicals within a specified mixture. Summary metrics representing multiple 

facets are frequently used in fields such as psychology (e.g., symptom severity scores) 

[10] and genetics (e.g., polygenic risk scores) [11, 12] to improve measurement precision 

and simplify risk prediction. However, scoring approaches to create summary metrics are 

currently underutilized in exposure mixtures research.
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Many existing environmental mixture data science approaches are supervised, such that 

they estimate the independent, joint, interactive, or overall effects of a mixture of chemical 

biomarkers on a pre-specified health outcome [13–17]. These approaches jointly model 

the environmental mixture-health outcome relationship; therefore, the findings could differ 

across related health endpoints, even if they represent the same physiological system. These 

potentially inconsistent findings may make it difficult to understand how to intervene on 

modifiable mixtures to reduce health impacts. There are a dearth of studies that focus on 

quantifying cumulative exposure burden to environmental mixtures, independent of a pre-

specified health outcome. This is known as an unsupervised approach, because the exposure 

burden to the mixture is modeled independently of a health outcome, so the exposure burden 

metric will remain constant across health outcomes.

A summary metric of cumulative exposure burden based on chemical biomarkers can be 

useful for biomonitoring, risk assessment, and health effects research. A summary measure 

can be used to identify individuals or groups of individuals with high exposure burden 

who may be most vulnerable to health effects and should be prioritized for intervention. 

Researchers may also be interested in comparing burden across race/ethnicity groups, socio-

economic strata, and geographical regions. By using a consistent metric of exposure for 

the environmental mixture, researchers can compare the relative “contribution” of exposure 

burden across many health outcomes/endpoints. Calculating a single summary measure (or a 

set of summary metrics) can also be useful to collapse higher dimensional data for mediation 

analyses, confounding adjustment, and disease risk calculators when mixtures are of interest 

but not the primary research question. Another benefit of a summary score is the ability to 

compare a common measure across studies to aid harmonization or meta-analyses to make 

full use of all environmental chemical mixtures data. In some cases, a comparable summary 

score can be computed for a chemical class even when studies do not measure the same set 

of chemical exposure biomarkers within the class, whereas results from supervised mixtures 

approaches are not readily combined or compared when chemical exposure biomarkers are 

not common across studies.

In this review, we will discuss two common approaches for quantifying exposure burden 

based on biomarkers of environmental chemicals (sum-scores and principal components 

analysis, or PCA) and then discuss item response theory (IRT) as a novel and promising 

alternative. Our focus is on describing unsupervised methods, such that the summary 

score is not computed in relation to a pre-specified health outcome. We will describe 

prior applications of these methods in the environmental health literature and the strengths, 

assumptions, and limitations of each approach. We will focus on how these methods could 

be used to set a common exposure burden scale across studies to enable cross-study 

harmonization, pooled analyses, and meta-analyses. We will additionally address issues 

around dimensionality and how to determine whether a single summary metric or multiple 

summary metrics best fit the data. We will explore future directions for how these methods 

could be used to address pressing questions in the precision environmental health and 

environmental justice literature, around fairness and equity in computing exposure burden 

scores to ensure they are a fair and informative metric for all people.
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Sum-scores

A common, simple approach for generating a measure of total exposure burden from 

chemical bioassay data is to calculate a sum of mixtures concentrations (Table 1), 

possibly incorporating weights that provide additional information [9]. For example, the 

National Academies of Science, Engineering and Medicine (NASEM) released clinical 

recommendations [18] for individual health monitoring based on the summed concentration 

of several PFAS analytes in a person’s serum or plasma. Toxic equivalency factors (TEFs) 

are used by health agencies to calculate a toxicity-weighted total measure for dioxin and 

dioxin-like compounds, and researchers have proposed using molar sums [19] or androgen 

disrupting potency-weighted sums [20] for calculating total burden of exposure to phthalates 

[21, 22].

Summed approaches are easy to compute and have a straightforward interpretation. 

However, there are limitations to using a simple or weighted summation as a proxy 

of exposure burden. First, sum scores may not fairly represent the relative importance 

of each exposure analyte if different concentration ranges are observed for different 

exposure analytes. Even if these differences are accounted for using pre-specified weights, 

these weights may not be optimal and typically do not account for uncertainty in their 

determination. Another limitation of using sum-scores is that researchers do not often 

empirically test for dimensionality (e.g., whether a single sum-score can adequately 

represent the data, or whether multiple sum-scores are needed). As such, the sum-score 

may reduce construct validity (e.g., whether it accurately measures what it is supposed to). 

In addition, when using sum-scores, researchers implicitly assume that a single measurement 

model (e.g., a simple summation) adequately reflects exposure burden for all people. 

Due to heterogeneity in exposure sources and patterns in population subgroups, a simple 

summation could mask disparities in exposure burden across groups, because a simple 

summation could be a more valid measurement model for some population subgroups than 

for others. For example, Liu et al. [25] found that using a simple summation of PFAS 

analyte concentrations masked disparities in PFAS exposure burden between non-Hispanic 

Asians and non-Hispanic Whites, while these disparities were uncovered using a customized 

scoring algorithm of PFAS burden that accounted for heterogeneity in exposure profiles. 

Finally, using sum-scores can be limiting for pooled analyses because epidemiological 

studies often measure different sets of exposure analytes within a chemical class. In this 

setting the sum-score can only include exposure analytes assayed in all studies, discarding 

valuable information.

Principal Components Analysis

Principal components analysis (PCA) is another approach for dimensionality reduction, to 

represent multivariate data with a smaller number of scores [29]. Researchers who wish to 

use PCA scores must first decide on the number of principal components to retain [30]. 

This decision can be made through various criteria, including theoretical considerations, 

graphical methods such as scree plots, and numerical methods such as parallel analysis. If 

only one summary measure is needed, the first principal component provides an optimally 

weighted sum of the observed measurements such that no other weighted sum explains 
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greater variance. Unrotated PCA scores are commonly used and are uncorrelated with each 

other. Rotating PCA scores does not change the amount of information represented in the 

set of PCA scores, but it redistributes weights in a way that can improve interpretation [31]. 

In this setting, the first rotated component may no longer explain the largest amount of 

variance. As an example of PCA, Maresca et al. 2015 [32] used PCA for dimensionality 

reduction of urinary phthalate metabolite concentrations. Of note, PCA and its extensions, 

including the newly developed principal component pursuit [33], are often also used to 

identify exposure patterns.

There are several important limitations of the PCA approach. First, PCA analyses are 

typically based on Pearson correlations which reflect the strength of the linear relationship 

between variables. PCA with Pearson correlations cannot account for variables that are 

nonlinearly related. However, methods are available to conduct nonlinear PCA that can 

better account for variables that are nonlinearly related [34]. A potential reason for 

nonlinearity in environmental mixtures research is that some exposures often have high 

frequencies of non-detects. Directly using linear PCA in this case may be problematic, 

although principal component pursuit [33] and zero-inflated PCA methods [35] may be 

promising alternatives.

Item Response Theory

Latent variable models, including factor analysis and item response theory (IRT), are 

another option for estimating exposure burden scores. Factor analysis and IRT are 

structurally similar dimension-reduction techniques and assume that the observed exposures 

are indicators of the latent, underlying exposure burden. However, factor analysis has 

been recommended for research questions to examine the structure and construct validity 

of a scale (e.g. identifying the number of factors), while IRT has been recommended 

when the goal is to estimate scores for participants (for details, see [36, 37]). As recent 

advancements in factor analyses for environmental mixtures research [38] have been 

summarized elsewhere (see [7, 26]), our focus here is on describing IRT.

IRT was originally developed in educational testing for creating scales and scoring of high-

stakes assessments (e.g., scoring college entrance exams), but has now been increasingly 

applied in the biomedical literature, such as for patient reported outcomes [39], cognitive 

outcomes [40], and allostatic load [41]. Most recently, IRT has been applied to create 

exposure burden scores to environmental mixtures, such as PFAS [25, 27, 28] and phthalate 

mixtures [23].

IRT routinely addresses issues that are conceptually similar to the challenges of constructing 

exposure burden scores. Specifically, IRT estimates exposure burden as a latent variable 

and the scoring algorithm accounts for both exposure analyte concentrations and exposure 

patterns to the environmental mixture to derive scores: The overall premise of IRT 

is that individual items differentially inform the latent variable, through data-driven 

nonlinear functions specific to that item. In our case, we view an “item” as any specific 

individual-level measurement, such as individual exposure or exposure analyte or biomarker. 

Analogous to how educational test items are indicators of a students’ latent (underlying) 
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cognitive ability, measured exposure analytes can be considered indicators for a latent 

environmental mixture burden. A simple sum or PCA only focus on measured exposure 

analytes, which may miss the bigger picture for exposure. Further, IRT uses information 

about the exposure analyte concentrations, and exposure patterns to the environmental 

mixture, to estimate burden scores. Two individuals may have very similar summed 

concentrations, but the underlying exposures that yield their individual sum scores could 

be quite different. Whereas there would be minimal differences in sum scores between these 

two individuals, their IRT derived exposure burden scores would likely be more different, 

as the IRT algorithm uses information both about the magnitudes of concentrations of 

exposure analytes as well as the pattern of exposure concentrations to derive scores. As IRT 

approaches are mostly developed for categorical data, when applied to environmental data, 

studies often discretize continuous exposure analyte data prior to IRT analysis, which is also 

more robust to outliers compared with using continuous data. For example, in developing 

a 2017–2018 PFAS exposure burden calculator whose scores can be interpreted relative to 

the general US population, we used survey-weighted decile cutoffs to discretize continuous 

PFAS biomarker data into up to ten categories per PFAS biomarker prior to IRT analysis 

[28].

Single Exposure Burden Scores vs. Multiple Exposure Burden Scores

At times, based on conceptual, theoretical or data-driven considerations, a single cumulative 

metric may be sufficient to represent the exposure burden, while at other times multiple 

exposure burden scores may be needed. For sum scores, these may be defined based on 

theoretical considerations; for example, researchers construct separate sums of low and high 

molecular weight phthalates instead of an overall sum. For PCA, researchers can decide to 

retain more than one principal component (PC), depending on the variance explained and 

interpretability. For example, Maresca et al. 2015 [32] retained two PCs in their analysis, 

finding that PC1 scores represented exposure to DEHP and PC2 scores could be interpreted 

as exposure to non-DEHP phthalates.

Multi-dimensional IRT can also be used to derive multiple summary scores to represent 

exposure to correlated exposome sub-classes [42], or a bifactor [43] or hierarchical structure 

[44]. For example, Chen et al. 2023 [23] compared multiple IRT measurement models 

to represent phthalate burden, and identified that a correlated factors model with three 

dimensions (low molecular weight, high molecular weight, and DEHP) fit the data best 

using established model fit statistics. Statistical methods to determine the number of 

dimensions to retain is a major topic in exploratory factor analysis (for details, see overview 

in Auerswald and Moshagen [45]). It is recommended to use multiple methods to find 

converging evidence for the appropriate number of factors to use, and to fit and compare 

models using different numbers of factors [45, 46]. For instance, one may wish to use 

a unidimensional latent variable model to estimate an overall score, even if multiple sub-

factors are identified, especially if the sub-factors are correlated with each other [47, 48]. 

Finally, it is important to also consider whether the models make theoretical sense [49], as 

burden scores based on an implausible models may not validly represent true latent burdens.
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Calculating Exposome Burden Scores in the Presence of Exposure Data 

with High Frequency of Non-detects

In environmental mixtures research, at times there are components of a chemical biomarker 

mixture with a high frequency of non-detects, for example in the case of contaminants that 

are uncommonly used by industry or exposure biomarker for which many study participants 

have levels below the limit of detection (LOD). When using sum-scores or PCA, researchers 

can use imputation, such as substituting by LOD/sqrt(2) or more complex approaches [50]. 

When using IRT, researchers do not need to impute – IRT accommodates mixed item types, 

meaning that researchers can use different numbers of categories for different exposures/

biomarkers (e.g. using deciles for frequently detected exposures, and using binary detect/

non-detect for infrequently detected exposures).

Implications for Cross-Study Harmonization and Meta-analyses: Creating a 

Common Exposure Burden Scale Across Studies

Data harmonization is often needed in consortia and other research to achieve large enough 

sample sizes to detect small effect sizes in pooled analysis, or to make inferences and 

comparisons across a heterogenous population. This may involve pooled analyses across 

studies, in which individual participant data is pooled across multiple cohorts to increase 

sample size, or meta-analyses. For example, the Environmental influences on Child Health 

Outcomes (ECHO) Program pools together exposure data previously measured for multiple 

cohorts to examine health effects of chemical exposures [51].

There are two challenges that occur in data harmonization of exposure data: 1) Different 

studies or laboratories may not measure the same set of chemical exposure biomarkers 

within a chemical class of interest, and it is important to not be limited to only analyzing 

the common set of exposure biomarkers measured across all cohorts; and 2) it is important 

to create a common exposure burden scale across studies, so that participants scores can be 

compared across studies and retain the same meaning. For example, because ECHO cohorts 

measured biomarkers in different laboratories at different times, pooled studies are typically 

limited to a common set of biomarkers measured across all cohorts. In a pooled analysis that 

investigated the association of gestational PFAS mixtures and childhood body mass index 

across eight ECHO cohorts, there were 14 PFAS analytes measured by at least one cohort 

that participated in the study, but the analyses only focused on the 7 PFAS analytes that had 

detection frequencies greater than 50% and were assayed in three or more cohorts [52].

When using sum-scores or PCA to quantify a cumulative exposure metric using the 

combined study data, researchers are generally limited to only using the set of exposure 

analytes that are common across studies. If researchers wish to include additional exposures 

only assayed in some studies, they may need to impute exposure data for the studies 

with missing exposure variables, which can introduce bias. If researchers instead decide to 

calculate study-specific sum-scores or PCA scores, in a setting where there are different sets 

of exposures assayed across studies, the participants’ scores from one study cannot then be 

compared to participants’ scores from another study, because they will not be on the same 
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scale. In other words, the same numerical exposure burden score does not retain the same 

meaning across studies, and thus cannot be used for pooled analyses or meta-analyses.

In contrast to other approaches, IRT can be used to facilitate cross-study harmonization, 

by creating a common exposure burden scale across studies, such that the scores retain the 

same meaning across studies even if they didn’t measure the exact same set of exposure 

biomarkers, allowing for the full exposure data collected across studies to be used and 

not just limited to the common set. The exposures that were collected in common across 

studies are used as “anchor items” to place exposure burden scores onto a common scale 

across studies [53]. In this way, it is possible to estimate a common latent variable model 

for all studies [54]. For example, Liu et al. 2022 [28] developed a PFAS exposure burden 

score calculator based on 2017–2018 US PFAS biomonitoring reference ranges. Researchers 

can input PFAS analyte data from their studies to calculate PFAS burden scores on the 

same scale, which enables future harmonization and meta-analyses. We showed that this 

common scale can be used even if only a smaller set of PFAS analytes were assayed, and 

results were robust to associations with health outcomes. Even when the most informative 

PFAS analytes for the burden score were set to missing, we still found similar associations 

between the PFAS burden score and the health outcomes of interest. This finding may 

be in part because IRT takes into account an individual’s exposure patterns in addition 

to concentrations of individual exposures, through data-driven nonlinear functions specific 

to that exposure, to derive exposure burden scores. Chen et al. 2022 [23] found that for 

phthalate summary scores, when a portion of participants in the study sample were missing 

phthalate metabolites, perhaps due to contamination of a batch, researchers would not be 

able to calculate molar sums on a common scale but would still be able to calculate phthalate 

burden scores on a common scale. Importantly, the simulation showed that consistent 

associations with health outcomes were identified even if half of the participants did not 

have measures of some phthalate metabolites (as might occur if different laboratory panels 

were used for different studies that did not contain the same analytes).

In Fig. 1, we provide an illustration of data harmonization challenges, in which we seek 

to do a pooled analysis of three studies, and there are five exposure variables (exposures 

‘A’, ‘B’, ‘C’, ‘D’, ‘E’) measured in one or more of the studies. While Study 1 measures 

‘A’, ‘B’, ‘D’; Study 2 measures ‘A’, ‘D’, ‘E’; and Study 3 measures ‘A’, ‘B’, ‘C’, ‘E’; 

we see that only exposure ‘A’ is measured in common across the three studies. If using 

sum-scores or PCA, we are limited to only assaying exposure A, the common exposure, or 

we will need to impute exposure data for each study which introduces bias. Alternatively, 

study-specific sum-scores or PCAs cannot be used in a pooled analyses of the three studies 

because they are clearly not on the same scale; if they are used in a pooled analyses it may 

introduce substantial bias. Meanwhile, if using IRT, we can input data from the three studies 

together to estimate a common latent variable model. In this way, we can use the full set of 

exposure data measured across studies, and exposure ‘A’ can be used as the anchor item to 

set a common exposure burden scale across the three studies. The exposure burden scores 

estimated from the common latent variable model will be on the same common scale across 

the three studies, so that the participants’ scores from each study retains the same meaning 

and can be compared and used in pooled analyses.
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Ensuring the Exposure Burden Metric is Fair and Informative for all People 

to Facilitate Precision Environmental Health and Environmental Justice 

Research

A primary goal of precision environmental health is to deliver individually-tailored, 

precision interventions to reduce an individual’s environmental exposure for primary disease 

prevention. In environmental justice, researchers may be interested in comparing exposure 

burden scores across subpopulations to identify and address exposure disparities. Both 

research goals necessitate having a fair and informative exposure burden metric for all 

people. One urgent concern, which has been understudied in environmental mixtures 

research, is whether it is appropriate to use a single measurement model to represent the 

cumulative burden metric for all people. The implicit assumption when using sum-scores, 

PCA, or a single IRT model is that a undimensional measurement model is sufficient for 

estimating exposure burden for all people. However, there may be a need for personalized 

exposure burden metrics to account for exposure heterogeneity, such as if different diets 

and behaviors predispose people to be exposed to different sets of exposures. As there may 

be systematic differences in exposure sources, we may need customized scoring algorithms 

for calculating exposure burden scores to ensure they are equitable and informative for all 

people.

Latent variable models can be used to identify if it is appropriate to use the same 

measurement model across groups (e.g. demographic subpopulations) to represent 

underlying exposure burden. These methods are known as differential item functioning 
(DIF) [55] or measurement invariance analysis [56] in latent variable modeling literature. 

If DIF is detected for a particular analyte, this suggests that for two individuals with the 

same underlying level of exposure burden, a participant from one subgroup has a different 

probability of having a certain concentration level of that exposure analyte compared to a 

participant from a different subgroup. DIF is a concern because if it is not accounted for 

in IRT modeling, the resulting exposure burden scores may be biased or will not be on a 

common scale that facilitates comparisons or pooling across heterogeneous subgroups. In 

environmental health, a potential cause of DIF could be exposure source heterogeneity, in 

which different socio-demographic subgroups have different diets or behaviors that expose 

them to different sets of exposures within the chemical class of interest. It is important 

to note that the presence/absence of group differences (i.e., overall differences in the 

distribution of exposure burden scores between two population subgroups) is different than 

the presence/absence of DIF. There are many formal tests to detect DIF, and if it is found 

to exist for certain exposure analyte(s) across groups, exposure burden scores can be derived 

by using different measurement models across groups, while also setting a common scale 

across groups through the identification of anchor items that do not function differently 

across groups, so that the exposure burden scores can be compared across groups while 

retaining the same meaning. If exposure burden scoring is hypothesized to be different 

across a known group (e.g. sex), a multiple group IRT approach may be used with anchor 

item(s) to set a common scale. If researchers hypothesize that an unknown combination of 

socio-demographic, diet and behavioral characteristics may affect exposure burden scoring, 

such as in the case of exposure source heterogeneity, a mixture IRT (MixIRT) method 
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combining IRT and latent class analysis could be used. The MixIRT method calculates 

customized exposure burden scores by simultaneously identifying latent subpopulations 

characterized by different exposure burden scoring algorithms and estimating those scoring 

algorithms for each latent subpopulation, while using anchor item(s) to set a common scale 

across latent subpopulations. The method predicts customized exposure burden scores that 

are based on a participants weighted likelihood of belonging to each latent subpopulation 

[25, 57]. We showed that by creating customized PFAS exposure burden scores using a 

mixture IRT approach, we were able to identify disparities in PFAS exposure burden across 

racial/ethnic groups that were masked when using summed concentrations as the summary 

metric [25].

Measurement Error in the Exposure Burden Metric and Accounting for 

Error in the Exposure Burden Scores when Examining Mixture-outcome 

Associations

A participant’s cumulative exposure burden score is estimated with some error, because 

there is uncertainty about how closely an individual’s true exposure burden can be estimated 

by the chosen measurement model (e.g. sum-scores, PCA or IRT). When exposure burden 

scores are used for biomonitoring or communicating exposure burden to participants, it is 

important to also relay the standard error of the exposure burden metric. Similarly, when 

investigating associations of the exposure burden metric with health outcomes, it is also 

important to conduct sensitivity analyses that incorporate the measurement error of the 

exposure burden metric to verify the robustness of findings.

Sum-scores allow for the estimation of measurement error of the sum-score, by a 

transformation of the reliability coefficient [58]. However, the standard errors estimated 

are not individual-specific; the standard error is the same for everyone in the dataset. While 

standard errors of the sum scores putatively account for the fact that an individual exposure/

item is an incomplete measure of overall burden, because standard errors of sum-scores 

are the same for everyone in the dataset, this has disadvantages in that it does not reflect 

that a set of exposures may measure some individuals in the sample more accurately than 

it measures others. Second, standard errors computed for sum scores are considered to be 

sample-specific and may not generalize to different populations.

Meanwhile, PCA does not readily allow for the estimation of standard errors in the scores. 

As PCA is not a latent variable model [59], it does not explicitly account for errors or 

uncertainty in the scores themselves. In other words, there is no error term inherent to the 

PCA model as its primary purpose is dimension reduction. In contrast, both sum scores and 

IRT are based on latent variable models that include an error term from which standard 

errors may be computed [60].

IRT allows for the estimation of individual-specific standard errors of the exposure burden 

score, reflecting that the true exposure burden is measured better for certain individuals than 

for others. Specifically, standard errors of IRT scores account for the fact that an individual 

exposure analyte/item is an incomplete measure of overall burden. This framework also 
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appropriately assigns a larger standard error to an individual who has missing data on 

one or more exposures (e.g., there may have been contamination and certain exposure 

analytes may have been missing for a subset of the sample). This means that there is 

more uncertainty the fewer exposure analytes that are measured for an individual—this is 

automatically accounted for in estimating the individual-specific standard error. Another 

advantage of IRT-based scoring over other scoring methods is that standard errors can be 

predicted for new populations, so long as the model is verified to be appropriate for that new 

population. [61]. Researchers who wish to convey uncertainty in scores may also consider 

using IRT-based interval estimates [62].

When verifying the robustness of associations between the exposure burden metric and the 

health outcome, researchers have different options. One option is to simultaneously estimate 

the measurement model (such as IRT) and the structural model (such as regressions with 

other outcomes), using structural equation modeling (SEM) [63]. SEM explicitly allows 

users to investigate the relationships of latent variables with other outcomes. As another 

option, if using IRT estimates that have been estimated in a separate step (such as through 

the PFAS burden score calculator), it is possible to appropriately account for this uncertainty 

through the use of plausible value imputation, as we have shown [23, 27, 64]. The premise 

is that the point estimates of the latent variable scores (e.g. estimated exposome burden 

scores) are an imperfect estimate of the true unknown exposome burden, so plausible values 

provide multiple imputations of the score values and are available in most software packages 

for fitting IRT models. For example, Chen et al. 2022 [23] used plausible value imputation 

[65] to verify the association between multi-dimensional phthalate burden scores and insulin 

resistance in sensitivity analyses. They imputed sets of plausible values of the factor scores 

using their calibrated IRT model, which accounts for errors in the estimation of the IRT 

model scores, and estimated associations with the health outcome, and repeated this process 

many times to plot the effect sizes and p-values.

Future Directions and Challenges: Exposome Burden Scores for Non-

targeted Chemical Exposomics Data

Traditionally, the exposome has been measured by analytical chemistry laboratories using 

targeted chemical analysis, which focuses on a set of predefined chemicals that are 

suspected to have toxicological or adverse effects [66]. This has led to gaps in exposure 

assessment as this approach often excludes newly introduced chemical substances that may 

also pose substantial health risks. Thus, regrettable substitution – the practice of replacing a 

known toxic chemical with another chemicals that is later determined to be equally or more 

toxic – has made the exposome more difficult to measure as the scope of chemical exposures 

becomes more complex and variable [67]. Non-targeted analysis (NTA) is a discovery-based 

analytical chemistry approach to detect organic chemicals that are not included in targeted 

chemical analysis [3]. NTA relies on high resolution mass spectrometry (HRMS) and 

provides unitless peak areas for each feature (mass-to-charge ratio detected by the HRMS 

paired with a chromatography retention time – if enough data is collected by HRMS, this 

feature can be matched to a chemical identify or chemical formula). When paired with data 
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dimension reduction approaches, such as burden scores, NTA can help identify cumulative 

exposures to new chemicals that arise as a result of regrettable substitution.

However, there are multiple data challenges for applying exposome burden scores to 

non-targeted data. Within a cohort, non-targeted exposome data may be sparse (due to 

unusual or uncommon chemical structures only encountered in a small group of people) 

and exhibit multi-dimensionality that complicates analysis and interpretation. Further, 

there are significant challenges for applying exposome burden scores for cross-study 

harmonization when using non-targeted data. Because NTA provides non-standardized 

unitless peak areas than can vary from instrument to instrument, comparing intensities 

across laboratories or even study populations is challenging. Further, in biospecimens, it can 

be challenging to detect low-abundant chemical exposures when signals from metabolites 

and other small biomolecules are much higher, potentially masking the exposome. There are 

ongoing standardization and harmonization efforts in the NTA community for detection 

of environmental chemicals (e.g., Best Practices for Non-Targeted Analysis—BP4NTA

—https://nontargetedanalysis.org/). [68, 69] Data dimension reduction approaches for 

detecting low-abundance, potentially sparse, yet highly important or toxic chemicals in these 

data sets is critical for improving our understanding of the exposome, so that researchers 

can better understand and mitigate the health impacts of chemical exposures and regrettable 

substitution.

Conclusion

Summarizing exposure burden, through the creation of fair and informative index scores, is 

increasingly an important part of environmental health research as environmental exposures 

are used for clinical recommendations and biomonitoring. Advanced psychometric methods 

such as IRT may be a useful way to address pressing questions in cross-study harmonization 

and fairness in exposomics research. In the research community, exposome burden scores 

can be used for multiple uses (see Fig. 2), including: 1) for cross-study harmonization, such 

as creating exposure burden calculators so that exposures can be placed onto a common 

scale across studies, even if they didn’t measure the same set of exposures within that class; 

2) for health effects quantification; that is, to model the impact of cumulative exposure on 

multiple health outcomes, while keeping the exposure metric fixed so that the relative impact 

on each health outcome can be compared; as a cumulative environmental index for studying 

gene-environment interactions on health outcomes, and as a exposure mediator variable, for 

example to assess if the impact of a predictor on the health outcome is mediated through the 

environment; 3) for biomonitoring and environmental justice, towards identifying high-risk 

groups for earlier intervention/monitoring for precision environmental health and primary 

disease prevention; and 4) for report-back to participants in community engaged research, 

in which researchers can report-back an index of exposure to research participants, and if 

the index was calibrated based on nationally representative biomonitoring data, participants 

can compare their own exposure burden scores relative to those of the US population 

to understand their own exposure risks. There are myriad opportunities for adapting use, 

additional methodology development, and dissemination of exposome burden scores in 

environmental health research.
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Fig. 1. 
Illustration of cross-study harmonization
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Fig. 2. 
Illustration of downstream uses of exposome burden scores
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