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ABSTRACT: Per- and polyfluoroalkyl substances (PFAS) are
ubiquitous and persistent chemicals associated with multiple
adverse health outcomes; however, the biological pathways affected
by these chemicals are unknown. To address this knowledge gap,
we used data from 264 mother−infant dyads in the Health
Outcomes and Measures of the Environment (HOME) Study and
employed quantile-based g-computation to estimate covariate-
adjusted associations between a prenatal (∼16 weeks’ gestation)
serum PFAS mixture [perfluorooctanesulfonic acid (PFOS),
perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid
(PFHxS), and perfluorononanoic acid (PFNA)] and 14,402
features measured in cord serum. The PFAS mixture was associated
with four features: PFOS, PFHxS, a putatively identified metabolite
(3-monoiodo-L-thyronine 4-O-sulfate), and an unidentified feature (590.0020 m/z and 441.4 s retention time; false discovery rate
<0.20). Using pathway enrichment analysis coupled with quantile-based g-computation, the PFAS mixture was associated with 49
metabolic pathways, most notably amino acid, carbohydrate, lipid and cofactor and vitamin metabolism, as well as glycan
biosynthesis and metabolism (P(Gamma) <0.05). Future studies should assess if these pathways mediate associations of prenatal
PFAS exposure with infant or child health outcomes, such as birthweight or vaccine response.
KEYWORDS: epidemiology, PFAS, prenatal, untargeted metabolomics, mixture

■ INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous
synthetic chemicals used in consumer products, such as
cookware, food packaging, textiles, and firefighting foams for
their oil-, water-, and heat-resistant properties.1−4 PFAS do not
readily degrade in the environment and contaminate drinking
water, ground water, and surface water, as well as food, air,
biosolids, and agricultural products.5 As a result of their
ubiquitous distribution and persistence in the environment,
people are continuously exposed to PFAS via ingestion of
contaminated drinking water, food, indoor dust, or air.1,6,7 Many
PFAS bioaccumulate in humans, including perfluorooctanoic
acid (PFOA), perfluorooctanesulfonic acid (PFOS), and
perfluorohexanesulfonic acid (PFHxS), with half-lives ranging
from 3.8 to 8.2 years.8,9

Prenatal exposure to individuals and mixtures of PFAS has
been associated with reduced birthweight, preterm birth,
decreased vaccine response in children, and unfavorable
cardiometabolic outcomes.1,10−15 Yet, the mechanisms by
which PFAS exposure leads to these conditions are unclear.
Thus, studies are needed to investigate the range of biological

pathways with which PFAS interact to provide insight into the
array of adverse health effects associated with PFAS exposures.

Untargeted metabolomics is a discovery-based technique that
comprehensively assesses metabolic profiles and pathways.16 In
tandem with statistical tools like metabolome-wide association
studies (MWAS) and pathway enrichment analysis, relations
between exposures to PFAS and hundreds to thousands of
metabolites and their corresponding biological pathways can be
investigated.16−25 As such, untargeted metabolomics is being
increasingly used to identify metabolites and pathways
associated with human exposure or disease.16

While numerous statistical methods have been developed to
quantify the potential effects of chemical mixtures, few studies
have evaluated the impact of PFAS mixtures on the fetal
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metabolome.16−24 Understanding the impact of PFAS expo-
sures on the fetal metabolome is important because PFAS can
cross the placenta, and the fetus may be more sensitive to
environmental exposures compared to later life stages.1

Furthermore, the investigation of chemical mixtures is critical,
given that PFAS exposure does not occur in isolation.

To address these research gaps, we evaluated the impact of a
mixture of PFAS [PFOS, PFOA, PFHxS, and perfluorononanoic
acid (PFNA)] concentrations on the fetal metabolome.We used
PFAS levels measured in prenatal serum samples and untargeted
metabolic profiling of newborn cord serum collected from
participants enrolled in a prospective pregnancy cohort study in
Cincinnati, Ohio. Additionally, we examined each PFAS
individually and included N-methylperfluorooctane sulfonami-
doacetic acid (MeFOSAA) in themixture analysis to gain insight
into their potential influence on the mixture in secondary and
sensitivity analyses, respectively.

■ MATERIALS AND METHODS
Study Participants. This study was based on participants

from the Health Outcomes and Measures of the Environment
(HOME) Study, a prospective pregnancy and birth cohort that
recruited participants between March 2003 and January 2006.
Details for this study, including inclusion criteria, have been
described previously by Braun et al. (Figure S1).26 Briefly, 8878
pregnant people were identified from obstetric practices in
Cincinnati, Ohio, and the surrounding area, with 1263 (14%)
eligible for participation.26 From these participants, 468
pregnant people enrolled in the study (37%), with 389 having
live singleton births.26 In this study, we included pregnant
people with at least one prenatal serum PFAS measurement and
untargeted cord serum metabolomics data, resulting in a final
sample size of 264 mother−infant dyads.

Serum PFAS Measurements. Methods and procedures
have been previously validated and described.27−29 In brief, after
the serum was separated from whole blood, samples were stored
at −80 °C in 2.0 mL polypropylene vials.27−29 Samples were
then shipped on dry ice to the Centers for Disease Control and
Prevention (CDC) laboratory for analysis.27−29 PFAS was
quantified at the CDC using solid-phase extraction coupled with
high-performance liquid chromatography-isotope dilution with
tandem mass spectrometry (HPLC-MS/MS), following a
modified analytical method.27−29 Details on instrument settings

can be found in Kato et al.27 Quality control (QC) and blank
samples were included in each batch and coefficients of variation
(CVs) for QC materials were ∼6%.27 Levels of detection were
0.1 ng/mL for all PFAS, except for MeFOSAA and PFOS, which
were 0.09 and 0.2 ng/mL, respectively. Descriptive statistics are
discussed in detail in “Statistical Analysis” Section and reported
in Table 1 and in the “Results and Discussion” Section.

We selected four PFAS of interest a priori; these were PFOA,
PFNA, PFHxS, and PFOS. These four PFAS were identified a
priori for investigation as these particular PFAS have been
recognized by the Environmental Protection Agency as likely to
cause adverse health effects and are subject to proposed
regulation under the Clean Drinking Water Act.30 Moreover,
these four PFAS have been detected in 97% of the US
population, observed to have longer half-lives compared tomany
other PFAS, such as MeFOSAA, and are often identified at
higher levels in the serum compared to other PFAS.31,32 PFAS
samples from 16 weeks’ gestation (86%) were preferred to
reduce the potential impact of pregnancy-related hemodynamic
changes on serum concentrations; however, samples from 26
weeks’ gestation (11%) or delivery (3%) were used when a 16-
week sample was unavailable. We imputed PFAS values below
the limit of detection (LOD) using the LOD divided by the
square root of 2 for all analyses and log2-transformed PFAS to
reduce the influence of outliers.

Untargeted Metabolomics. We performed untargeted
metabolomics using previously established methods for liquid
chromatography high-resolution mass spectrometry (LC-
HRMS).17,33 We collected venous cord blood at delivery and
stored isolated serum aliquots at −80 °C before thawing them
on ice prior to extraction. We then performed sample extraction
by adding 130 μL of acetonitrile containing a mixture of stable
isotope standards to 65 μL of serum, vortexing the solution,
equilibrating the sample for 30 min, and centrifuging to remove
proteins. The resulting supernatant was transferred to an LC-
HRMS analysis vial and analyzed on a Q-Exactive HF equipped
with a Vanquish ultrahigh-performance liquid chromatograph
(Thermo Scientific). For each sample, we analyzed 10 μL
aliquots in triplicate using hydrophilic interaction chromatog-
raphy (HILIC) with positive electrospray ionization and
reversed-phase chromatography (C18) with negative electro-
spray ionization. Further details of the analytical methods,
including chemicals and reagents, the chromatography scheme,

Table 1. Maternal Serum Per- and Polyfluoroalkyl Substance (PFAS) Concentrations in the HOME Study (2003 to 2006, N =
264) and NHANES (2003 to 2008, N = 180)a

NHANES HOME Study

PFAS (ng/mL) median (IQR)b geometric mean (GSD)c mind 25% 50% 75% max LOD N (%) ≥ LOD

carboxylic acids
PFOA 2.2 (1.2, 3.3) 5.5 (1.8) 0.5 3.9 5.6 8.0 26 0.1 100
PFNA 0.6 (0.4, 0.9) 0.9 (1.5) 0.1 0.7 0.9 1.2 2.9 0.1 100

sulfonic acids
PFHxS 1.0 (0.5, 1.9) 1.5 (2.1) <LOD 0.9 1.5 2.4 31 0.1 99
PFOS 10 (5.3, 14) 13.24 (1.7) 0.4 9.9 14 18 57 0.2 100

sulfonamides
MeFOSAA 0.5 (1.9) <LOD 0.3 0.4 0.8 2.8 0.09 100

aHOME, Health Outcomes and Measures of the Environment; NHANES, National Health and Nutrition Examination Survey; IQR, interquartile
range; SD, standard deviation; Min, minimum; Max, maximum; LOD, level of detection; N, frequency; PFOA, perfluorooctanoic acid; PFNA,
perfluorononanoic acid; PFDEA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFOS, perfluorooctanesulfonic acid; PFOSA,
perfluorooctanesulfonamide; MeFOSAA, N-methylperfluorooctane sulfonamidoacetic acid; EtFOSAA, N-ethyl perfluorooctane sulfonamidoacetic
acid. bData reported in ref 43. cPFAS below the level of detection were imputed using LOD/√2 for geometric means and SDs. dSome minimums
may be below the level of detection for values with 100% above the LOD due to rounding.
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QA/QC samples and frequency, and sample batching, are
provided in the Supporting Information (Tables S1 and S2).

Data-dependent acquisition (DDA) data were kept and
analyzed in the .RAW file. The full scan MS1 data were saved in
the .RAW file format and converted to cdf format using Xcalibur
File Converter. The converted files were extracted and aligned
using apLCMS.34 Uniquely detected ions, termed features,
consisted of mass to charge (m/z), retention time, and ion
abundance. We detected 19,032 and 36,243 negative and
positive features, respectively. Since we analyzed our samples in
triplicate, we limited our analysis to features with coefficients of
variation <30% to improve the reliability of our measures. We
summarized triplicate injections using the mean and removed
features with >20% nondetection (i.e., ion abundance = 0),
which resulted in 5863 negative and 8539 positive features. For
features with ≤20% nondetect, values with ion abundance = 0
were imputed using the minimum area within a feature divided
by the square root of 2. We performed batch correction on
feature data using the WaveICA_2.0 package in R.35 Finally,
metabolic features were log2-transformed to satisfy the normal-
ity assumptions of our statistical models and stabilize the mean−
variance relationship.

Covariates. We identified covariates of interest from a
literature review and explored relations between these covariates
using a directed acyclic graph (DAG) (Figure S2).36 From this
DAG, we obtained a minimal sufficient adjustment set that
included maternal age at birth (continuous), self-reported
maternal race/ethnicity (White non-Hispanic, Black non-
Hispanic, Asian/Pacific Islander, Native American, Hispanic,
other race), parity (nulliparous, parous), household income
(continuous), and serum cotinine concentrations at 16 weeks
gestation (continuous); race was used in this study as a proxy for
structural racism. For all analyses, we categorized maternal race/
ethnicity as White non-Hispanic vs other race to address data
sparsity. All covariates in the minimal sufficient adjustment set
were determined via self-reported questionnaire except for
cotinine concentrations, which were quantified in maternal
serum collected at 16 weeks’ gestation using HPLC-MS/MS.
Cotinine concentrations were log10-transformed to reduce the
influence of outliers.

Statistical Analysis. Descriptive Statistics. We calculated
the median [interquartile range (IQR)] for continuous variables
and the frequency (percentage) for categorical variables
included as covariates in our models. We also calculated the
median, IQR, minimum value, maximum value, and percentage
below the LOD for all measured PFAS. Finally, we calculated
Spearman correlation coefficients among PFOA, PFNA, PFHxS,
PFOS, and MeFOSAA to evaluate correlations between PFAS.
Multipollutant MWAS. We employed quantile-based g-

computation (QGComp) to examine associations between
prenatal concentrations of a PFAS mixture and the neonatal
metabolome.37 QGComp calculates the parameters of a
marginal structural model; these parameters characterize the
difference in feature intensity, resulting from a simultaneous,
one-quantile increase of all PFAS in the mixture.37 Four PFAS of
interest were identified a priori for inclusion in our PFAS
mixture: PFOA, PFNA, PFHxS, and PFOS. These PFAS were
identified for inclusion due to their increased likelihood to cause
adverse health effects, widespread detection, and longer half-
lives compared to other PFAS, such as MeFOSAA and higher
serum levels.30−32We categorized all PFAS into quartiles for this
analysis. To control for the risk of false discoveries due to the

large number of statistical tests, we employed the Benjamini−
Hochberg method at a false discovery rate (FDR) < 0.2.38

As PFOSA and EtFOSAA had low levels of detection (1% and
32% ≥ LOD, respectively), these PFAS were not explored
further. Additionally, PFDEA was not further explored due to
the lack of variability as 41% of values had concentrations of 0.2
ng/mL (N = 108) and 19% of 0.3 ng/mL (N = 51). However, we
included MeFOSAA in a sensitivity analysis given its high level
of detection (100% > LOD) and absence of variability concerns.
For this sensitivity analysis, we reran analyses using a 5-PFAS
mixture (the 4-PFAS mixture plus MeFOSAA), additionally
using an FDR < 0.2 to denote statistical significance.38 These
analyses were conducted using the qgcomp package in R with
default settings.37

Single-Pollutant MWAS. To conduct the MWAS of the
association of each PFAS included in our PFAS mixture
individually with the fetal metabolome, we used multivariable
linear regression, adjusting for maternal race, maternal age at
delivery, parity, serum cotinine, and household income. Similar
to the multipollutant MWAS, we calculated FDR values based
on the Benjamini−Hochberg method and utilized an FDR <
0.2.38

Annotation of Features.We assigned identities to features by
matching commonly detected adducts formed in positive and
negative ESI at ±5 ppm using the Human Metabolome
Database via xMSannotator.39 Annotation confidence was
reported using the Metabolomics Standards Initiative (MSI)
recommendations.40 In this scale, level 1 is a compound
identified by comparison to an authentic reference standard (in
this study, we examined MS2 data in comparison to a verified
reference standard), level 2 is a compound annotated by
matching isotopic patterns and matching m/z, level 3 is a
putatively annotated compound class, and level 4 is an unknown
feature.

Metabolic Pathway Enrichment Analysis. We applied
mummichog pathway enrichment analyses to identify enriched
pathways usingMetaboAnalystR 3.2 and data from both positive
and negative modes.25 We restricted the adducts used to those
that could potentially form based on our mobile phases and
internal standards. For the negative mode, we used the adducts
M + FA − H [1−], M − H [1−], 2M − H [1−], M − H2O − H
[1−],M−H+O [1−],M(C13)−H [1−], 2M+ FA−H [1−],
M − 3H [3−], M − 2H [2−], M + ACN − H [1−], M +HCOO
[1−], and M + CH3COO [1−]. For the positive mode, we used
the adductsM [1+],M +H [1+],M + 2H [2+],M + 3H [3+],M
+ H2O + H [1+], M − H2O + H [1+], M(C13) + H [1+],
M(C13) + 2H [2+],M(C13) + 3H [3+],M −NH3 +H [1+],M
+ ACN +H [1+], M + ACN + 2H [2+], M + 2ACN + 2H [2+],
M + 3ACN + 2H [2+], M + NH4 [1+], M + H + NH4 [2+], 2M
+H [1+], and 2M + ACN +H [1+]. We conducted our analyses
with the human MFN network, which is curated from multiple
libraries, including KEGG, BiGG, and the Edinburghmodel. We
utilized a mass tolerance of 5 ppm, 10,000 permutations, and a p-
value cutoff <0.05 to delineate between significantly enriched
and nonsignificantly enriched pathways. We restricted analyses
to pathway-specific metabolite data sets containing at least 3
entries. A p(Gamma) < 0.05 was considered statistically
significant. A detailed description of our mummichog settings
can be found in the Supporting (Table S3). All analyses were
conducted using R (version 4.2.1).41 R code for this analysis is
available on Github.42
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■ RESULTS AND DISCUSSION
Mothers in the present study were similar to the full HOME
Study cohort in terms of race/ethnicity, household income,
parity, age at delivery, and tobacco use (Table S4).26 Median
serum PFNA, PFHxS, and PFOS concentrations in our study
were generally similar to medians in pregnant people in
NHANES between 2003 and 2008 (Table 1).43 However,
median PFOA concentrations were over 2-fold higher in our
study compared to pregnant people in NHANES between 2003
and 2008, possibly due to increased drinking water exposure
emanating from a fluoropolymer manufacturing plant upstream
of Cincinnati, OH (Table 1).43,44 MeFOSAA had considerably
lower levels than any of the 4-PFAS included in our mixture,
with a median of 0.4 ng/mL (IQR: 0.3−0.8). All PFAS analyzed
in our study had 99% or more of their values ≥ the LOD (Table
1). Additionally, these PFAS had low-to-moderate pairwise
correlations, with Spearman correlation coefficients between
0.02 and 0.51 (Figure S3).

The mixture of PFOA, PFOS, PFNA, and PFHxS was
associated with four metabolic features after covariate adjust-
ment (FDR < 0.20; Figure 1). These features include PFOS,
PFHxS, 3-monoiodo-L-thyronine 4-O-sulfate, and a metabolite
with an m/z of 590.0020 and a retention time of 441.4 s. PFOS
and PFHxS were identified at a level 1 confidence (confirmed
structures; Figure S4), 3-monoiodo-L-thyronine 4-O-sulfate was

putatively identified at level 3, and the metabolite with anm/z of
590.0020 and a retention time of 441.4 s was level 4 (unknown
feature) using the MSI scale. The identification of PFOS and
PFHxS (at a level 1 confidence) as significantly associated with
the targeted/quantified PFAS mixture containing PFOS,
PFHxS, PFNA, and PFOA was expected, despite their detection
on two different analytical platforms and further validates this
laboratory and statistical methodology. Although PFNAwas not
identified using this method (either due to the lack of
identification by LC-HRMS or removal due to high CVs), the
PFAS mixture was also significantly associated with PFOA
before FDR correction (non-FDR corrected p-value <0.001).

When examining the relationship between individual PFAS to
the cord serum metabolome, PFOA, PFOS, PFNA, and PFHxS
were associated with 5, 14, 4, and 3 features, respectively (Figure
S5); no significant associations were found between MeFOSAA
and any features.

The mixture of PFOA, PFOS, PFNA, and PFHxS was
significantly associated with 49 enriched pathways p(Gamma) <
0.05] in our pathway enrichment analysis (Figures 2 and S7).
The pathways identified most frequently were associated with
amino acid metabolism (N = 11), glycan biosynthesis and
metabolism (N = 11), carbohydrate metabolism (N = 10), lipid
metabolism (N = 8), and metabolism of cofactors and vitamins
(N = 5); four pathways not grouped into a larger group (referred
to as “other” pathways) were also identified. The results for the

Figure 1. Identified and putatively identified cord serummetabolic features associated with a prenatal (∼16 weeks’ gestation) mixture of four PFAS in
the HOME Study (2003 to 2006,N = 264). This analysis used a quantile-based g-computation model of a mixture of four serum PFAS concentrations
(PFOA, PFNA, PFHxS, and PFOS) withmetabolic features adjusted for household income, maternal race, parity, maternal age at delivery, and tobacco
exposure at 16 weeks’ gestation; a false discovery rate (FDR) < 0.2 was employed (red dashed line). Annotation was conducted using the Human
MetabolomeDatabase (HMBD) andmanually inspectingMS2mass spectra for confirmation and confidence was determined using theMetabolomics
Standards Initiative (MSI); PFOS and PFHxS were confirmed at a level 1 confidence, 3-monoiodo-L-thyronine 4-O-sulfate was putatively identified at
level 3, and the unknown features was level 4. *Unknown feature has a mass-to-charge ratio of 590.0020 and a retention time of 441.4 s.
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two most enriched pathways for amino acid metabolism
(arginine and proline metabolism; valine, leucine, and isoleucine
degradation) appeared to be driven by PFHxS, and, to a lesser

extent, PFOS, based on the magnitude of the significant p-values
observed from single-pollutant models (Figure 2). In contrast,
associations between the PFAS mixture and carbohydrate

Figure 2.Cord serummetabolic pathways significantly associated with a mixture of four PFAS and individual PFAS concentrations during gestation in
the HOME Study (2003 to 2006,N = 264). For the 4-PFAS mixture model (PFOA, PFNA, PFHxS, and PFOS) and the single-pollutant models, PEA
employed results from a quantile-based g-computation model and four linear regression models, respectively, adjusting for annual household income,
maternal race, maternal age at delivery, parity, and tobacco exposure at 16 weeks’ gestation. P(Gamma) < 0.05 was considered statistically significant
for all mummichog pathway enrichment analyses.
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metabolism appeared to be driven by PFNA. Moreover, several
pathways related to glycan biosynthesis and metabolism were
likely driven by PFOA, as PFOA has the highest number of
significant p-values of the mixture [N = 8/11]. In addition,
compared to the p-values derived from the PFASmixture, PFOA
seemed to drive associations with blood group biosynthesis,
glycosphingolipid biosynthesis (lactoseries), glycosphingolipid
biosynthesis (neolactoseries), nucleotide sugar metabolism,
proteoglycan biosynthesis, keratan sulfate biosynthesis, and O-
glycan biosynthesis given its lower p-values compared to other
PFAS. The differences between the magnitude of the PFAS
mixture p-values and the PFOA p-values did not appear to be
explained by any of the other 3 measured PFAS individually,
suggestive of potential synergistic interaction between these four
PFAS with relation to some pathways within glycan biosynthesis
and metabolism. However, synergism was not directly assessed,
and evaluation of synergistic and antagonistic chemical
interactions was outside of the scope of this study. It did not
appear that any individual PFAS in the mixture was driving
associations with lipid metabolism or the metabolism of
cofactors and vitamins. Additionally, 40 (82%) of the 49
significantly enriched pathways for the PFAS mixture and infant
metabolome assessment remained significantly enriched when
MeFOSAAwas added to themixture (Figure S8). In a sensitivity
analysis by adding MeFOSAA to our PFAS mixture, 3-
monoiodo-L-thyronine 4-O-sulfate was no longer significant;
all other features remained statistically significant, and no other
features were identified as significant (Figure S6).

For the single-pollutant models of the PFAS mixture and the
infant metabolome, we identified 95 significantly enriched
pathways in total [P(Gamma) < 0.05] (Figures S9−S14). Of
these pathways, 5 (5.3%) overlapped across all four PFAS; these
pathways were the TCA cycle, keratin sulfate degradation,
benzoate degradation via CoA ligation, phytanic acid perox-
isomal oxidation, and alkaloid biosynthesis (Figures S9−S15).
Of these pathways, the TCA cycle, keratin sulfate degradation,
and phytanic acid peroxisomal oxidation were associated with
the PFAS mixture (Figure 2). Furthermore, 24 (25%) of the
observed pathways overlapped across 3 PFAS, 31 (33%)
overlapped across 2 PFAS, and 35 (37%) were associated with
a single PFAS (Figure S15). A single PFAS was independently
associated with at least one of the 49 significantly enriched
pathways associated with the PFAS mixture and infant
metabolome (Figures 2 and S9−S14).

Notably, one feature associated with PFOA (FDR <0.20) was
annotated to several endogenous glucocorticoids with a level 2
confidence. This is consistent with previous animal studies that
have found PFOA may inhibit hydroxysteroid dehydro-
genases.45−47 As such, this pathway could be examined in
greater detail as a potential mediator of PFAS toxicity in future
studies.

The enriched pathways identified in this study have previously
been associated with adverse health outcomes.19,48,49 Epidemio-
logical studies have established that carbohydrate, lipid, and
amino acid metabolism are associated with impaired glucose
metabolism, leading to adverse health outcomes, such as type 2
diabetes.19,48 Additionally, amino acid metabolism and glycan
biosynthesis and metabolism have both been associated with a
higher risk of hepatocellular carcinoma, the most common
primary liver cancer.49 As our study demonstrates an association
between PFAS and these metabolic pathways, this may help
explain potential mechanisms between PFAS and these
outcomes like liver disease.19,48,50 Therefore, future studies

could investigate these pathways as potential mediators between
PFAS and these health outcomes. Prior studies have also
observed associations of the prenatal and infant metabolome
with adverse birth outcomes, such as birthweight.51−55 For
example, Collicino et al. found 35 prenatal serum metabolites
related to lipid metabolism (∼30 weeks’ gestation) were
associated with lower birthweight z-scores in 410 mother−
child dyads from Boston or New York City.51 Conversely, a
study by Yeum et al. did not find that prenatal plasma
metabolites (24 to 28 weeks’ gestation) were associated with
birth anthropometry, including birthweight z-scores.53 How-
ever, when evaluating cord plasma rather than maternal plasma,
this study did observe associations between metabolic lipid
pathways and birthweight and length z-scores in 413 pregnant
people and 787 infants in rural NewHampshire.53 As PFAS have
been consistently associated with adverse birthweight, future
studies could examine the prenatal or infant metabolome as a
mediator of associations between PFAS and adverse birth
outcomes.56 Additionally, PFAS have also been associated with
decreased vaccine response in children; however, we do not
know of any studies evaluating the serum or plasmametabolome
and decreased vaccine response in children, specifically using
untargeted metabolomics.14 Regardless, future studies could
evaluate the metabolome as a mediator for the PFAS−vaccine
response association.

In a previous report from the HOME Study, PFOS, PFOA,
PFHxS, and PFNA concentrations during pregnancy were
associated with leukocyte DNA methylation at birth and during
adolescence (∼12 years of age).57 Many of the CpGs associated
with PFAS are related to cancers, cardiovascular disease, and
kidney function�all outcomes related to PFAS exposure in
adults.57 This result taken in tandemwith our study suggests that
PFASmay impact biological pathways at both the epigenetic and
metabolomic levels. Future studies could use multiomics
approaches to better elucidate these relations.

Results from our study are largely consistent with previous
studies examining prenatal PFAS or PFASmixtures in relation to
the maternal or infant metabolome, with the most consistent
associations observed for the amino acid and lipid metabo-
lism.22,24,58,59 Taibl et al. evaluated associations of late
pregnancy PFOA, PFNA, PFOS, or PFHxS concentrations
with the infant metabolome (measured via blood spots within 48
h of birth) for 267 mother−child pairs in African-American
women in Atlanta Georgia between 2016 and 2020.59 They
observed significant associations for mostly amino acid path-
ways; these pathways included arginine, proline, and lysine
metabolism but not glutamine metabolism or valine, leucine,
and isoleucine degradation. Additionally, a cross-sectional study
evaluating 459 pregnant people in the VDAART Study also
found that lipid and amino acid pathways were significantly
associated with a mixture of PFOA, PFOS, PFDEA, PFHxS, and
PFNA and the maternal metabolome, measured in late trimester
blood plasma.22 Another cross-sectional study evaluating four
PFAS individually (PFHxS, PFOS, PFOA, or PFNA) and the
maternal metabolome (serum between 8- to 14-weeks’
gestation) in 313 African-American people found a considerable
number of enriched pathways overlapping the pathways
identified in our study (amino acid metabolism, glycan
biosynthesis and metabolism, carbohydrate metabolism, lipid
metabolism, and metabolism of cofactors and vitamins).58

Although these studies had similar findings, it is important to
note that findings were not identical across studies. Some
reasons for observed differences between these studies and ours
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may be the result of utilizing single vs multipollutant models,
inclusion of different PFAS in the PFAS mixture, differences in
PFAS concentrations between studies, and/or differences in
untargeted metabolomics methods.

The present and prior results regarding PFAS exposure and
the human metabolome complement findings from rodent
studies as well.60−68 For example, rodent studies have also
observed associations between PFAS and lipid metabolism.60−64

This association is unsurprising as PFAS are structurally similar
to fatty acids and have also been associated with dyslipidemia in
adults.65,69 Additionally, rodent studies have also found
associations between PFAS and amino acid metabolism as
well as carbohydrate metabolism.60,64,66−68 However, most of
these studies examined only PFOS or PFOA.

Our study has several notable strengths. Using a prospective
pregnancy cohort, we were able to establish temporality between
our exposure and outcome. In addition, we utilized untargeted
metabolomics to identify a wide range of metabolic features and
pathways, allowing for an assessment of metabolic features and
pathways that may not normally be evaluated using hypothesis-
driven targeted approaches. Furthermore, we measured each
metabolic feature in triplicate, thus improving the precision of
our untargeted metabolomics data. Another strength is the
evaluation of the joint effect of a prenatal PFAS mixture on the
cordmetabolome in addition to the single-pollutant effects. This
is important as chemicals may jointly impact the metabolome,
even when no individual effects exist or appear minimal.70

Furthermore, as PFAS are ubiquitous and some PFAS were
moderately correlated with each other, participants in this study
had simultaneous exposure to multiple PFAS, thus justifying our
analysis of joint effects.

This study also had some limitations. Even though we
detected a high number of metabolic features in this study using
an untargeted approach, not every metabolic feature was reliably
detectable as some were nondetectable or had CVs > 30%. Thus,
we may have potentially missed some associations, as our
MWAS and pathway enrichment analysis were restricted only to
those detectable by our instruments with a reasonably reliable
signal. Second, with 264 observations, we were underpowered to
explore potential modification by child sex.71 Third, the
participants in this study were from a select population,
specifically those enrolled in the HOME Study based in
Cincinnati, Ohio. As such, results may not be generalizable or
transportable.72 However, we saw a substantial overlap between
pathways identified in our study and previous study results,
including significant associations between several metabolic
pathways associated with amino acid and lipid metabolism.

In this study, we found that a mixture of PFOS, PFOA, PFNA,
and PFHxS in maternal serum was significantly associated with
four molecular features and 49 enriched pathways related to
amino acid metabolism, glycan biosynthesis and metabolism,
carbohydrate metabolism, lipid metabolism, and metabolism of
cofactors and vitamins in the cord serum metabolome, which
was consistent with previous studies. These pathways have been
associated with type 2 diabetes, hepatocellular carcinoma, and
low birthweight and thus could explain the link between prenatal
PFAS exposure and these health outcomes. Future studies could
assess if these associations mediate associations between
prenatal PFAS exposure and adverse birth or childhood
outcomes, such as birthweight or vaccine response.
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